
Lattice QCD on upcoming ARM architectures
Nils Meyer∗, Dirk Pleiter∗†, Stefan Solbrig∗, Tilo Wettig∗

∗Department of Physics, University of Regensburg, Germany
†Forschungszentrum Jülich, Germany

QPACE 4 project

▶ Aims to design an ARM SVE environment optimized for Lattice QCD
▷ Prototype at the University of Regensburg, Germany, by 2020

▶ Pursues evaluation and enhancement of existing SVE software toolchain and
upcoming SVE hardware technologies for Lattice QCD applications

▶ Enables Lattice QCD code optimized for SVE architectures, e.g., the Japanese
flagship supercomputer ”Post-K” announced for 2021

ARM SVE

▶ The ARM Scalable Vector Extension (SVE) targets the HPC market [1]
▶ Key features of SVE hardware

▷ Wide vector units, ranging from 128 bit to 2048 bit
▷ Vectorized native 16 bit floating point operations, including arithmetics
▷ Vectorized arithmetics of complex numbers
▷ The silicon provider chooses the vector register length and defines the

performance characteristics of the SVE hardware
▷ The first SVE hardware officially announced is the Post-K, which comprises

512 bit wide vector units, 48 compute cores per node and high performance
stacked memory [2]

▶ Key features of the SVE instruction set architecture (ISA)
▷ SVE follows a vector-length agnostic (VLA) programming model that adapts

itself to the available vector length (VL)
▷ VLA predication allows for selection of vector elements to be used for

processing, which enables, e.g., complex control flows within loops
▷ Support for structure load/store, e.g., load of an array of two-element

structures into two vectors, with one vector per structure element
▷ The ARM C Language Extensions for SVE (ACLE) intrinsics provide

convenient access to features of the SVE hardware in C/C++ [3]

SVE code example

▶ daxpy in C99 (yi← yi + a× xi with real operands)
void daxpy(double a, double *restrict x, double *restrict y, int n) {

for (int i = 0; i < n; i++)
y[i] = y[i] + a * x[i];

}

▶ Assembly output of the armclang 18.3 SVE compiler (auto-vectorization enabled)
whilelo p1.d, xzr, x8 // pred. for x_i, y_i; xzr=0; x8=n; z0=a
ptrue p0.d // pred. for result vector

.LBB0_2:
ld1d {z1.d}, p1/z, [x1, x9, lsl #3] // pred. load z1 <- y_{i..}
ld1d {z2.d}, p1/z, [x2, x9, lsl #3] // pred. load z2 <- x_{i..}
fmad z1.d, p0/m, z0.d, z2.d // pred. multiply -add
st1d {z1.d}, p1, [x2, x9, lsl #3] // pred. store z1 -> y_{i..}
incd x9 // increment x9
whilelo p1.d, x9, x8 // pred. remaining y_{i..}
b.mi .LBB0_2 // conditional branch to LBB0_2

▶ Discussion
▷ armclang is unaware of the VL and optimizes for the VLA paradigm
▷ The binary code executes for all VL implementations

SVE code development tools

▶ Compilers
▷ ARM provides us with their LLVM/clang-based armclang 18 compiler

(evaluation version available [4])
▷ RIKEN provides us with the Fujitsu SVE compiler
▷ We test the compilers, stimulate bug fixes and propose improvements in the

context of research contracts
▶ ARM Instruction Emulator (ArmIE)

▷ ArmIE allows for functional verification of SVE binaries emulating the SVE
ISA with user-defined VL (freely available [4])

▷ ArmIE is designed on top of the open-source DynamoRIO toolset enabling
code instrumentation at run-time [5]

▷ We contribute to DynamoRIO enabling advanced SVE code analysis, e.g.,
instruction mixing and branching statistics (→ Lattice 18 proceedings)

▶ gem5
▷ The gem5 simulator is a modular platform for computer architecture research,

encompassing system-level and processor architecture [6]
▷ RIKEN provides us with access to their gem5 simulator of the Post-K CPU
▷ We optimize our code guided by simulations of the Post-K CPU (future work)

”Grid” Lattice QCD framework

▶ Grid [7, 8] is a portable open-source Lattice QCD framework written in C++ 11,
maintained by Peter Boyle (Edinburgh) and co-workers

▶ Targets massively parallel architectures supporting SIMD + OpenMP + MPI
▶ Implements more than 100 tests and benchmarks
▶ ISA-specific code is implemented using intrinsincs and assembly

SIMD family Register size
Intel SSE4 128 bit
Intel AVX/AVX2 256 bit
Intel ICMI, AVX512 512 bit
IBM QPX 256 bit
ARM Neon 128 bit
ARM SVE variable
generic C architecture independent, user-defined array size

Enabling SVE in Grid

▶ We use ACLE for our SVE implementation to access the SVE features
▶ We minimize implications of the VLA programming model and bypass restrictions

on usage of ACLE data types
▷ We declare the vector length VL (in bytes) as a compile-time constant
▷ Superfluous loops implied by VLA are omitted
▷ The variety of predications is minimized to fit into the register file
▷ The templated struct acle<T> (T = double, float) provides convenient

access to ACLE definitions, e.g., predications and data types
▶ Code example: templated multiplication of two vectors of complex numbers

template <typename T>
struct vector {

alignas(VL) T v[VL / sizeof(T)]; // C-array
};

struct MultComplex {
template <typename T>
inline vector <T> operator()(const vector <T> &a, const vector <T> &b) {

vector <T> result; // result vector
typename acle <T>::sve_t z_v, a_v, b_v, r_v; // ACLE data types
svbool_t p; // predication

p = acle <T>::activate_all_elements(); // define predication
z_v = acle <T>::zero(); // z_v <- FP zero
a_v = svld1(p, a.v); // load a_v <- a
b_v = svld1(p, b.v); // load b_v <- b
r_v = svcmla_z(p, z_v, a_v, b_v, 90); // complex multiply -add
r_v = svcmla_z(p, r_v, a_v, b_v, 0); //
svst1(p, result.v, r_v); // store r_v -> result
return result; // return result

}
};

▶ Software development, verification and optimization
▷ We implement multiple coding schemes for SVE (→ Lattice 18 proceedings)
▷ We verify selected tests and benchmarks emulating multiple VL in the ArmIE
▷ At present one coding scheme fails to compile, and some tests give wrong

results due to SVE toolchain immaturity
▷ Run-time optimizations will be guided by gem5 CPU simulation (future work)

▶ Sources available at
https://github.com/nmeyer-ur/Grid/tree/feature/arm-sve

Future perspectives

▶ Improved and more mature development environment
▶ Extended support of the SVE ISA by compilers, e.g., instructions for complex

arithmetics and compiler-generated load/store using ACLE
▶ Possible endorsement of SVE data types in languages like C and C++
▶ We stimulate disclosure of details of ARM-based micro-architectures and ISA

performance characteristics relevant for HPC code design

References

[1] N. Stephens et al., IEEE Micro 37 Issue 2 [arxiv:1803.06185]
[2] http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0621-01.html
[3] “ARM C Language Extensions for SVE”, ARM, Tech. Rep. (2017)
[4] https://developer.arm.com/products/software-development-tools/hpc/documentation
[5] http://www.dynamorio.org/
[6] http://gem5.org/
[7] P. Boyle et al., Proceedings of LATTICE 15 (2016) [arxiv:1512.03487]
[8] https://github.com/paboyle/Grid

Supported by the German Research Foundation (DFG) in the framework of SFB/TRR-55 nils.meyer@ur.de

http://arxiv.org/abs/1803.06185
http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0621-01.html
https://developer.arm.com/products/software-development-tools/hpc/documentation
http://www.dynamorio.org/
http://gem5.org/
http://arxiv.org/abs/1512.03487
https://github.com/paboyle/Grid

